江城子 蘇東坡
十年生死兩茫茫 不思量 自難忘 千里孤墳 無處話淒涼
縱使相逢應不識 塵滿面 鬢如霜
夜來幽夢忽還鄉 小軒窗 正梳妝 相顧無言 唯有淚
米酵菌酸僅為Bongkrekic Acid的譯名,其名稱與「米」並無直接相關;台大毒理學研究所教授姜至剛表示,應改名為「椰黍菌酸」較為精確。
國內的稻穀收穫後由由糧食業者碾製加工為白米或糙米,包裝於市場銷售,加工過程未經發酵,且市售食米多數於收穫後半年內售罄,並無保存過久致病菌污染之虞。
椰子、玉米
蒸或煮製造、沒有添加玉米粉的純米粉,和米類似。
衛福部資訊
依規定,米粉絲產品米含量為100%,品名始得標示為「純米粉(絲)」或「米粉(絲)」,如米含量超過50%者,其品名得標示為「調和米粉(絲)」。 惟如米含量未達50%,其品名不得宣稱為「米粉(絲)」或「調和米粉(絲)」,避免造成消費者誤解,據了解廠商均逐步改善中。
接觸受米酵菌酸污染的食品後,程涵宇指出,潛伏期為1-10小時,主要影響器官為肝臟、大腦和腎臟。人類的徵兆和症狀與其他粒線體毒素臨床表現相似,但嚴重程度和時間進程有所不同,包括不適、頭暈、嗜睡、出汗過多、心悸、腹痛、嘔吐、腹瀉、血便、少尿、血尿等,患者檢查期間的發現包括低血壓、心律不整、體溫過高、黃疸、黃疸和四肢僵硬、嗜睡、譫妄、休克、昏迷和死亡。
程涵宇提到,易受米酵菌酸污染的食品主要有4大類,包括:變質澱粉類產品、變質的新鮮銀耳、完全或不完全發酵的玉米,以及椰子製品,因此像是腸粉、河粉、米線、濕米粉、濕冬粉、久泡木耳、久泡銀耳、涼皮及發酵玉米麵容易出現米酵菌酸污染。
許多人以為加熱就可以消除細菌,但程涵宇直言,這方法是沒辦法的,120℃加熱1小時,其毒性仍在,因此目前沒有針對解毒的特效藥。
程涵宇提到,受到汙染的食物是吃不出來的,因為米酵菌酸無臭、無味,因此受污染的食品具有正常的外觀、氣味和味道。
食藥署提醒,不論是什麼食物、食材,應遵守「5要」原則,以遠離食物中毒。
●要洗手:調理時,手部要清潔,傷口要包紮。
●要新鮮:食材要新鮮,用水要衛生。
●要生熟食分開:生熟食器具應分開,避兔交叉污染。
●要徹底加熱:食品中心溫度應超過70°C。(這個不適用米酵菌酸)
●要注意保存溫度:保存低於7°C,經烹煮或易腐敗食品低於5°C,室溫不宜久置。
AI 復 AI, AI 何其多!我生待 AI ,萬事成蹉跎。
很多人預測AI最後會因為產生自覺,為了保護地球長久的生態平衡,不得不策動消滅人類的歷史任務。
但是多數人可能沒有想到的,可能是,人類會因為過度依賴 AI 、加速耗盡地球能源,在AI自覺之前,就因為環境不可逆轉的相變,自己終絕自己。
懶的代價就是消耗大量能源
以前我們沒有終端機可用,為了避免程式的邏輯錯誤,要花好幾天重複打卡、排隊的困擾,寫程式時就會在紙上仔細檢查。
到了美國發現只要亂敲鍵盤,電腦馬上有回饋,很快就習慣在螢幕前直接亂敲、亂打,不再把事前檢查當一回事,完全忘了電腦代勞檢查,要耗費龐大能量,完全無視白吃的午餐是一種昂貴的陷阱。
反正付錢的也不是自己,付錢的學校或分配人民納稅錢的政府,可能也忽視真正要付出的代價是可憐的地球生態。
網路搜尋引擎、AI協助處理各種事務,都是用最笨的方法、最耗能源的方法,笨笨的摸索正確或最好的解決方式。在 AI 自覺前,懶惰成性的人類,還是會懶懶的用土法煉鋼法摸索。可惜的是,天下沒有白吃的午餐,笨笨的摸索需要地球付出龐大的代價。
人類協助AI消滅人類
AI一方面讓懶人覺得自己很聰明,一方面讓人類自認生活越來越幸福,也誘使人類設法餵飽他越來越難以滿足的胃口,忘了滿足胃口形同向地下錢莊借貸,忘了財務失控後必須付出的代價。
人類真的只能像旅行鼠一樣投海,完全搞不清楚未來在哪裡嗎?當那些科技新貴累積幾百輩子都用不完的財富,在富豪排行榜節節高昇時,記者莫名奇妙的自豪、羨慕語氣,難道都沒有人發現事情怪怪的嗎?
AI復AI,AI何其多! 我生待AI,萬事成蹉跎
有點好笑的是,AI 靠搜集網路資訊學習,但是和人腦一樣無法判斷這些資訊的真偽,和人類一樣會上當、傳播不實訊息,更有人宣稱AI會越學越笨、越學越壞,複製人類所有缺點,大家忙了半天,只是讓真理越辯越迷糊。
問題是大家都在搶速度,漫步的烏龜不想追不上宇宙的速度,弄得大家被迫盲目追速,烏龜真的能生存嗎?
誰知道歷史是不是一再重演
人類也許就是地球前一代主宰的偷懶產物,人類就是一種 AI android。
後記
以前擁核群眾哭喊缺電,常嘲笑反核群眾只會靠「愛」發電,誰知道現在喊缺電的也指望「愛AI」來幫忙發電。
要看到美麗的龜山島,要怎麼劃位?
如果是搭莒光2先往花東,想要看海的劃位,根據探子來報要選擇以下車位:1/5/9/13/17/21/25/29/33/37號
573/392=181
| 一般單程票 | 臺北 臺東 | 自強(3000) | 344.9km | 敬老 1 張 | 392 元 | ||
| 詳細 | 車票類型 | 起訖站 | 車種 | 里程 | 票數 | 票價 | |
|---|---|---|---|---|---|---|---|
| 騰雲座艙單程票 | 臺北 臺東 | 自強(3000) | 344.9km | 敬老 1 張 | 573 元 | ||
為了讓旅客舒適地享受旅途,特別將3000型城際列車每列次第6節車廂打造成騰雲座艙,和一般車廂相比,騰雲座艙提供30個座椅,提供寬敞的乘坐空間、沉著色調及皮革扶手質感的專屬座椅。
為搭乘旅客精挑細選來自國內、外的各種優質點心、飲品,可透過官網購票,預選餐點(其中騰雲座艙限定台鐵便當只要預訂就能享用),即享有「專人直送」餐點的獨有貼心服務。未經線上選餐,亦可於入座後,於列車上任選各式甜點及罐裝咖啡、騰雲座艙限定氣泡水、EMU3000型設計款瓶裝水等飲品。於享受嚴選點心、飲品的超值體驗中,展開專屬搭乘旅客的騰雲座艙味覺旅行。
※考量台鐵便當之賞味期限及送餐時效性,以指定開放預訂便當車次及該車次便當派送區間為限。
提供旅客於車上使用電腦、手機等3C電子產品時,能隨時充電。
供旅客方便放置大型行李,小型行李建議可放置座位座位上方行李架。
車廂提供免費wi-fi,讓旅客享受便捷快速免費無線上網。
方便旅客放置餐點、飲品,餐點食用完畢後可收藏回椅背。
乾淨的洗手間環境,供旅客乘車時使用。
光 速 自然界不可超越的極限
高文芳
我們都知道光速很快,大約每秒30萬公里,一秒鐘可繞地球七圈半。就是因為太快了,古希臘學者一直相信光速是無窮大。笛卡兒甚至還認為,光速如果不是無窮大,整個哲學體系都要重寫。
直到17世紀,丹麥天文學家羅莫發現木衛一每次月食開始的時間都不太一樣。而且,我們越靠近木星,月食開始時間越早。羅莫推估,這個時間差,就是光穿越地球軌道所需要的時間。只要知道地球繞太陽公轉的軌道半徑,就可以推估光速。當時由於精準度不太理想,羅莫的測量值,大約比精確值短少了約26%,不過這是首次測量出光速數值,也確認了光速是有限的,而不是無窮大。
1905年,愛因斯坦提出狹義相對論,更大膽地做了一個假設:真空中的光速在等速相對運動的座標系中都相同,意味著即使我們等速朝著光源跑,看到的光速也不會增加。以前有位助教在上相對論課時,講了一個笑話:某甲以0.8光速,乙以0.7光速互相接近,這樣甲看乙接近的速度,不就應該超過光速嗎?事實上,當我們看著高速運動的物體乙時,不但同向的長度會縮短,上面的時鐘也會走得比較慢,也就是乙的時空會隨著運動而扭曲,我們看到的會是一個非常奇異的世界。愛因斯坦的假設經過了多次實驗證實,後來造成深遠的影響,然而實在是超乎想像,對一般民眾而言,恐怕是20世紀最震撼的結果。
也因為光速在任何時間、任何地點量都一樣,所以1983年,國際度量衡標準局正式將一公尺的定義改成光行進1/299 792.458 0秒的距離。從那天開始,精確測量光速的意義,變成精確測量一公尺的長度為何。
有質量的物體,運動速率永遠沒有辦法超過光速,則是相對論的另一個重要結論。根據愛因斯坦的狹義相對論,質能可以互變,其公式就是。而且有質量的物體,一旦動起來,質量不但會增加,而且速率一旦接近光速,物體的質量,也就是能量會急速飆升,當速率挺進到光速時,能量就會變成無窮大。換句話說,要把有質量的物體加速,剛開始還算古典的困難,一旦速率越來越快,加速就會越來越困難,需要補給的能量當然就會越來越不像話。不難想像,任何有質量的物體,想要達到光速,絕對是不可能的任務。
光速是不可超越的這件事,在歷史上也曾遇上不少挑戰,但後來全以失敗告終。愛因斯坦和波耳的世紀大論戰,最後發現兩個纏結的基本粒子,即使距離再遙遠,也會透過量子效應瞬間互動,好像雙生子的心電感應。愛因斯坦認為這個結果違背相對論,但是有人認為這些量子互動,可能是經由微觀蠹孔傳遞,並沒有違背相對論。
另外最近很熱門的微中子超光速事件,最後則被證實是烏龍一場。雖然我們無法證明一個理論是對的,但是相對論的普適性,至今沒有任何可信的反證,因此多數物理學家相信,光速是不可超越的極限。
https://en.wikipedia.org/wiki/Diffraction_spike
In the vast majority of reflecting telescope designs, the secondary mirror has to be positioned at the central axis of the telescope and so has to be held by struts within the telescope tube. No matter how fine these support rods are they diffract the incoming light from a subject star and this appears as diffraction spikes which are the Fourier transform of the support struts. The spikes represent a loss of light that could have been used to image the star.[3][4]
Although diffraction spikes can obscure parts of a photograph and are undesired in professional contexts, some amateur astronomers like the visual effect they give to bright stars – the "Star of Bethlehem" appearance – and even modify their refractors to exhibit the same effect,[5] or to assist with focusing when using a CCD.[6]
A small number of reflecting telescopes designs avoid diffraction spikes by placing the secondary mirror off-axis. Early off-axis designs such as the Herschelian and the Schiefspieglertelescopes have serious limitations such as astigmatism and long focal ratios, which make them useless for research. The brachymedial design by Ludwig Schupmann, which uses a combination of mirrors and lenses, is able to correct chromatic aberration perfectly over a small area and designs based on the Schupmann brachymedial are currently used for research of double stars.
There are also a small number of off-axis unobstructed all-reflecting anastigmats which give optically perfect images.
Refracting telescopes and their photographic images do not have the same problem as their lenses are not supported with spider vanes.

Iris diaphragms with moving blades are used in most modern camera lenses to restrict the light received by the film or sensor. While manufacturers attempt to make the aperture circular for a pleasing bokeh, when stopped down to high f-numbers (small apertures), its shape tends towards a polygon with the same number of sides as blades. Diffraction spreads out light waves passing through the aperture perpendicular to the roughly-straight edge, each edge yielding two spikes 180° apart.[7] As the blades are uniformly distributed around the circle, on a diaphragm with an even number of blades, the diffraction spikes from blades on opposite sides overlap. Consequently, a diaphragm with n blades yields n spikes if n is even, and 2n spikes if n is odd.[8]
Images from telescopes with segmented mirrors also exhibit diffraction spikes due to diffraction from the mirrors' edges. As before, two spikes are perpendicular to each edge orientation, resulting in six spikes (plus two fainter ones due to the spider supporting the secondary mirror) in photographs taken by the James Webb Space Telescope.[9]
The knife-edge effect or knife-edge diffraction is a truncation of a portion of the incident radiation that strikes a sharp well-defined obstacle, such as a mountain range or the wall of a building. The knife-edge effect is explained by the Huygens–Fresnel principle, which states that a well-defined obstruction to an electromagnetic wave acts as a secondary source, and creates a new wavefront. This new wavefront propagates into the geometric shadow area of the obstacle.
Knife-edge diffraction is an outgrowth of the "half-plane problem", originally solved by Arnold Sommerfeld using a plane wave spectrum formulation. A generalization of the half-plane problem is the "wedge problem", solvable as a boundary value problem in cylindrical coordinates. The solution in cylindrical coordinates was then extended to the optical regime by Joseph B. Keller, who introduced the notion of diffraction coefficients through his geometrical theory of diffraction (GTD). Pathak and Kouyoumjian extended the (singular) Keller coefficients via the uniform theory of diffraction (UTD).
The last few days were great for science. We got some very beautiful, information-packed images from deep space. All thanks to the James Webb Space Telescope.

The image you see above is at a distance of 4.24 billion light years away from us! And the age of our planet is estimated to be 4.5 Billion years!
If you have not seen the images yet, please stop everything and go to this official link for all the recent images. It is a MUST WATCH!
After you have zoomed in and out on all, come back here to understand three important aspects of these images.

James Webb is an infrared telescope. The images from JWST like the one of the Carina nebula (shown above) and the deep field image are composed of data from the infrared spectrum, which has a longer wavelength than visible light. JWST used its infrared cameras to gather a number of grayscale “brightness images” to create the photos that are currently being shared.
Different infrared light wavelengths were each collected by one of six filters. Each filter on Earth was given a color. The filters that captured the longest and shortest wavelengths were red and blue, respectively, with the other colors falling in between. These photos were combined to create a composite image that includes every color present in the current photos.
So next time you hear someone saying the images are “edited”, remind them that the correct term is “processed”. No information is removed or added or altered from the actual photos.

This is the result of an effect known as gravitational lensing. The powerful gravitational field of a galaxy cluster can bend the light rays from more distant galaxies behind it, just as a magnifying glass bends and warps images.
A simpler (and more accurate) way of understanding is that instead of the light bending, the universe is bending around the massive object, which light passes near, so instead of the light being bent, the reality is. As an analogy imagine looking at a glass of water with a straw in it. From the side angle, you’ll see that the straw looks broken. We know that isn’t true, just an optical illusion.
If you look top down into the straw, you would see the straw is straight, unbroken. In the view of the light, it doesn’t bend at all. It goes in a straight line, but we are seeing it “bent” simply because it is passing through an area of space that is being warped. It’s not the light that is being pulled, but the very fabric of time and space which is being pulled.
This effect is known as gravitational lensing, and the amount of bending is one of the predictions of Albert Einstein’s general theory of relativity.

These are diffraction spikes. This happens because of how the telescope is constructed and some unavoidable elements. The sharp edges of the telescope’s primary mirror and the struts supporting the secondary mirror create these patterns as the light bends around them.

JWST struts and the shape of the mirror are designed intelligently to overlap some of those spikes. The combined effect results in the 8 spike star.

Hubble vs JWST
https://www.thespacetechie.com/understanding-james-webb-images-color-curves-and-spikes/
Carl Sagan 說 We are all star stuff. 編輯頁 課程草稿 7/8/23 宇宙大霹靂後,隨著宇宙的降溫,一部分輻射物質(以光速前進的能量稱為輻射物質)開始獲得質量,主要是形成電子與夸克等物質,隨後形成數量比約為 12:1 的化學元素氫與氦。...